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[11 A new dynamic-statistical parameterization of snow-free land surface albedo is
developed using the Moderate Resolution Imaging Spectroradiometer (MODIS) products
of broadband black-sky and white-sky reflectance and vegetation and the North American
and Global Land Data Assimilation System (LDAS) outputs of soil moisture during
2000—-2003. The dynamic component represents the predictable albedo dependences on
solar zenith angle, surface soil moisture, fractional vegetation cover, leaf plus stem area
index, and greenness, while the statistical part represents the correction for static effects
that are specific to local surface characteristics. All parameters of the dynamic and
statistical components are determined by solving nonlinear constrained optimization
problems of a physically based conceptual model for the minimization of the bulk
variances between simulations and observations. They all depend on direct beam or
diffuse radiation and visible or near-infrared band. The dynamic parameters are also
functions of land cover category, while the statistical factors are specific to geographic
location. The new parameterization realistically represents surface albedo variations,
including the mean, shape, and distribution, around each dependent parameter. For
composites of all temporal and spatial samples of the same land cover category over North
America, correlation coefficients between the dynamic component of the new
parameterization and the MODIS data range from 0.39 to 0.88, while relative errors vary
within 8—42%. The gross (i.e., integrated over all categories) correlations and errors are
0.57-0.71 and 17-26%, changing with direct beam or diffuse radiation and visible or
near-infrared band. The static local correction results in a further reduction in relative
errors, producing gross values of 11-21%. The new parameterization is a marked
improvement over the existing albedo scheme of the state-of-the-art Common Land Model
(CLM), which has correlation coefficients from —0.57 to 0.71 and relative errors of 18—
140% for individual land cover categories, and gross values of 0.03—0.32 and 37-71%,

respectively.
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1. Introduction

[2] Surface albedo greatly influences the surface energy
budget and partitioning, which in turn regulate circulation
patterns, change hydrological processes, and modify the
absorption of photosynthetically active radiation (PAR) and
thus determine the productivity of the Earth’s ecosystem
[Charney, 1975; Dickinson, 1983; Mintz, 1984; Sellers,
1985]. It also links climate changes to human activities
through land cover/use alterations [Henderson-Sellers and
Wilson, 1983; Xue and Shukla, 1993; Betts, 2000;
Govindasamy et al., 2001]. As such, surface albedo is a
crucial parameter in land surface models (LSMs). Modeling
studies have shown complex interactions among albedo,
climate, and the biosphere, which are nonlinear with both
positive and negative feedbacks [Charney et al., 1977; Cess,
1978; Dickinson and Hanson, 1984; Rowntree and Sangster,
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1986; Dirmeyer and Shukla, 1994; Lofgren, 1995], causing
responses of strong regional dependence [Liang et al., 2003;
Berbet and Costa, 2003; Hales et al., 2004] and substantial
uncertainties [Intergovernmental Panel on Climate Change
(IPCC), 2001; Myhre and Myhre, 2003].

[3] Albedo is determined by the surface characteristics,
depending on the angular and spectral distributions of
incident solar radiation. Observations [Nkemdirim, 1972;
Kriebel, 1979; Pinker et al., 1980; Irons et al., 1988;
Duynkerke, 1992; Grant et al., 2000] and radiative transfer
modeling studies [Dickinson, 1983; Kimes et al., 1987] have
indicated that surface albedo, over both bare soil and the
plant canopy, depends on solar zenith angle. This depen-
dence exists only for direct beam radiation and varies with
land cover types. In addition, albedos of different land cover
types exhibit distinct dependences on the solar radiation
spectrum, all of which, however, show a sudden jump near
0.7 pm [Li et al., 2002]. Green canopies are extremely
effective absorbers of solar radiation in the visible interval
(0.4-0.7 pm) to drive photosynthesis, whereas they reflect
and transmit most of the incident radiation in the near-
infrared band (0.7-4.0 um) due to relatively high leaf
scattering coefficients [Dorman and Sellers, 1989]. Thus
it is necessary for LSMs to distinguish direct or diffuse and
visible or near-infrared surface albedos.

[4] Bare soil albedo also depends on the material texture
caused by soil mineral composition and organic deposition
[Irons et al., 1988], surface roughness [Matthias et al.,
2000], and most evidently, is a decreasing function of
surface moisture content [Idso et al., 1975; Ishiyama et
al., 1996; Duke and Guérif, 1998; Muller and Décamps,
2001; Lobell and Asner, 2002]. Meanwhile, plant canopy
albedo is determined by various biophysical and biochem-
ical factors, especially leaf area index (LAI), leaf angle
distribution, leaf transmittance and reflectance, and in
sparse canopies, soil albedo, and vegetation coverage
[Dickinson, 1983; Sellers, 1985; Sellers and Dorman,
1987; Kimes et al., 1987; Bonan, 1996; Asner, 1998;
Wang, 2003; Hales et al., 2004]. Although snow causes
large temporal and spatial variations of surface albedo over
both bare soil and the plant canopy [Zhou et al., 2003], the
lack of accurate measurements of snow characteristics
(amount, coverage, age, pollutant levels) inhibits a rigor-
ous evaluation and further improvement for parameteriza-
tion of the snow-albedo effect. In this study, we focus on
snow-free albedo over all land surfaces.

[5] A complete physical representation of all preceding
albedo dependences is not possible. However, current land
surface albedo models are oversimplified and/or contain
substantial biases compared to observations. For example,
in the latest release version 2.0 of the next-generation
mesoscale Weather Research and Forecast model (WRF;
http://'www.wrf—model.org/), the snow-free surface albedos
of all the implemented LSMs [see Liang et al., 2004] are
prescribed with tabular values depending only on vegetation
types without any dynamic variation. In contrast, more
comprehensive albedo treatments have been incorporated
into the state-of-the-art Common Land Model (CLM) and
its predecessors and variations [Dai et al., 2003, 2004;
Dickinson et al., 1993; Bonan, 1996; Bonan et al., 2002;
Zeng et al., 2002] (see also Y. Dai et al., The Common Land
Model (CLM): Technical Documentation and User’s Guide,
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available at http://climate.eas.gatech.edu/dai/clmdoc.pdf,
2001) (hereinafter referred to as Dai et al., online paper,
2001). Numerous studies, however, have found serious
discrepancies in these models compared to satellite mea-
surements [Wei et al., 2001; Zhou et al., 2003; Oleson et al.,
2003; Wang et al., 2004].

[6] The recent increasing availability of high-quality,
fine-resolution satellite data provides an unprecedented
opportunity to develop more realistic dynamic-statistical
land surface albedo parameterizations. In particular, the
Moderate Resolution Imaging Spectroradiometer (MODIS)
measurements facilitate the accurate retrieval of direct and
diffuse albedos for visible, near-infrared, and total solar
bands using a semi-empirical kernel-driven Bidirectional
Reflectance Distribution Function (BRDF) model with
multidate, multispectral, cloud-free, atmosphere-corrected
surface reflectance [Lucht et al., 2000; Schaaf et al.,
2002]. The data are currently available over the global land
surfaces at 1-km resolution every 16-day composite period.
In comparison with these satellite data, the preceding
diagnostic studies have identified major model problem
areas, but none has yet developed improved parameter-
izations. To a certain extent, exceptions include 7ian et al.
[2004], who improved the CLM and MODIS agreement on
diffuse albedo from the use of more realistic land surface
data (LAI plant function type, and bare soil fraction) over
the globe, and Tsvetsinskaya et al. [2002], who linked
MODIS surface albedo statistics with soil classifications
and rock types over the arid areas of Northern Africa and
the Arabian peninsula.

[7] In this study, we use the MODIS and other supple-
mentary data to develop an improved dynamic-statistical
parameterization for snow-free land surface albedo. The
parameterization is initially designed for U.S. mesoscale
modeling applications in the framework of the CLM cou-
pled with the climate extension of the WRF (CWRF) [Liang
et al., 2004]. The conceptual model and processing proce-
dures, however, are described in detail and can be generally
applied to develop improved schemes for other LSMs and
over the globe.

2. Data

[8] The data used in this study consist of the MODIS
surface albedos [Schaaf et al., 2002], the Land Data
Assimilation System (LDAS) [Cosgrove et al., 2003;
Mitchell et al., 2004; Rodell et al., 2004b] surface soil
moisture, and other CWRF surface boundary conditions,
including land cover category (LCC), fractional vegetation
cover (FVC), and leaf and stem areas indices (LAI, SAI)
[Liang et al., 2004]. The last three parameters are also
based on MODIS products, but necessary adjustments are
made to ensure consistency with other conventional data
sets (see below). All data, except for the static LCC and
FVC, are time-varying samples from February 2000 to
December 2003. Given that the MODIS albedo data are
available at every 16-day composite period, other variables
are processed to the same interval by time averaging.

[s] For U.S. applications, the CWRF domain is centered
at (37.5°N, 95.5°W) using the Lambert Conformal Conic
map projection and 30-km horizontal grid spacing, with
total grid points of 196 (west—east) x 139 (south—north).
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The domain covers the whole continental United States
and represents the regional climate that results from
interactions between the planetary circulation and North
American surface processes, including orography, vegeta-
tion, soil, and coastal oceans [Liang et al., 2004]. All
variable data are processed onto this CWRF grid mesh
before their use in development of the new land surface
albedo parameterization.

[10] Given the various data resolution and map projec-
tions, the Geographic Information System (GIS) software
application tools, Arc/Info and Arc/Map, from Environmen-
tal Systems Research Institute, Inc., are employed to do
horizontal data remapping [Liang et al., 2004]. In particular,
the GIS tools are used to first determine the geographic
conversion information from a specific map projection of
each raw data set to the identical CWRF grid system. The
information includes location indices, geometric distances,
or fractional areas of all input cells contributing to each
CWRF grid. The remapping is completed by a bilinear
interpolation method in terms of the geometric distances if
the raw data resolution is low, or otherwise a mass conser-
vative approach as weighted by the fractional areas. For the
categorical field LCC, the total fractional area of each
distinct surface category contributing to a given CWRF
grid is first calculated and then the dominant one that
occupies the largest fraction of the grid is chosen.

2.1. MODIS Surface Albedos

[11] The MODIS BRDF/Albedo product (MOD43BI;
http://geography.bu.edu/brdf/userguide/albedo.html)
[Schaaf et al., 2002] includes directional hemispherical
(black-sky) and bihemispherical (white-sky) reflectance
(albedo) for three broad bands: visible (0.3-0.7 pm),
near-infrared (0.7—5.0 um), and total (0.3—5.0 pm). They
are obtained through spectral (seven measured) to broad-
band conversions [Liang et al., 1999; Liang, 2001] and can
be well reproduced by polynomials [Lucht et al., 2000],

3
Qb = Zﬁm(ggi +g00% + 2316°)
=1

o (1)
Ogd\ = Z/mg}f %
=

where o denotes satellite-derived albedo; b, d or bs, ws is
the black-sky, white-sky component; X is the spectral band;
and 6 is the solar zenith angle (radian). The fitting
coefficients g][’ks and g;* are given in Table I of Lucht et
al. [2000]. The BRDF model kernel weights f; y depend on
spectral bands and vary with time and location. They are
provided by the MOD43B1 product data at 1-km resolution
over the globe for every 16-day composite period.

[12] For the purpose of this study, the reprocess version
004 data for the BRDF model kernel weights are adopted
for their improved quality control. Only the snow-free
pixels that have a mandatory quality flag of “processed”
(QA =0 or 1) are selected. An additional constraint is that
the ratio of near-infrared to visible albedos is larger than 1.2,
or otherwise the data are discarded. This is to eliminate
potential poor quality data caused by cloud leaking through
the MODIS cloud detection algorithm (i.e., when both
bands are bright in the presence of clouds, the ratio is close
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to 1). For every 16-day composite, we calculate, using
equation (1), a single sample for white-sky albedo and 24-
hourly samples for black-sky albedo corresponding to the
actual local solar zenith angle. These oy, and oy 4
represent the direct beam contribution and the entire diffuse
portion, respectively. They form the ground truth for devel-
oping the new parameterization of snow-free land surface
albedo for direct and diffuse solar radiation, visible and near
infrared.

2.2. LDAS Surface Soil Moisture

[13] The multiinstitutional LDAS project is designed to
provide enhanced soil moisture and temperature conditions
for numerical weather/climate prediction models. The North
American LDAS (NLDAS) [Mitchell et al., 2004] is an
uncoupled data assimilation system, where a suite of LSMs
are driven by the same realistic atmospheric forcing data
and initialized at the same time with the same relative soil
wetness. No feedback from the land surface to atmosphere
is included. The forcing data represent the best available
proxy of observations, including the near-surface meteoro-
logical conditions (such as surface wind, temperature,
humidity, and pressure), precipitation analyses (merged
gauge, satellite, and model data), and surface radiation
budgets [Cosgrove et al., 2003; Pinker et al., 2003]. A
similar procedure is followed in the Global LDAS
(GLDAS) [Rodell et al., 2004b]. The NLDAS covers the
continental United States at 1/8° (~15 km) resolution while
the GLDAS extends over the globe north of 60°S at 1°
(~110 km) resolution.

[14] Currently, hourly outputs from the NLDAS Mosaic
[Koster and Suarez, 1992] and GLDAS Noah [Ek et al.,
2003] LSMs are available from the Hydrological Sciences
Branch of NASA Goddard Space Flight Center (http://
Idas.gsfc.nasa.gov/LDAS8th/Mosaic.LDAS.output.htm).
The Mosaic LSM’s physics are based on those of the Simple
Biosphere Model (SiB) [Sellers et al., 1986] that accounts
for the sub-grid heterogeneity of vegetation and soil mois-
ture. Energy and hydrology balance are computed at each
mosaic tile of a distinct vegetation type [Avissar and Pielke,
1989]. Within each grid, up to 10 tiles can be specified and,
for each variable, the grid value equals the area average of
all tiles. The Noah LSM [Chen et al., 1996; Koren et al.,
1999] has been used operationally in National Centers for
Environmental Prediction (NCEP) models with continuous
improvements [Betts et al., 1997; Ek et al., 2003].

[15] Several studies have evaluated and compared soil
moisture performance between the LSMs. Comparisons
with in situ measurements in Illinois and Oklahoma
indicated that the NLDAS/Mosaic total column soil
moisture is strongly correlated with observations [Robock
et al., 2003; Schaake et al., 2004]. Since soil moisture
exhibits a high degree of spatial variability, it must be
cautioned that comparing grid model outputs with point
measurements is not a dependable method of validation.
Comparisons with gravity-based terrestrial water storage
estimates from the Gravity Recovery and Climate Exper-
iment (GRACE) satellite mission showed that the
GLDAS/Noah simulates seasonal, large-scale variations
with a reasonable degree of accuracy, and better than
other existing global products examined [Zapley et al.,
2004; Rodell et al., 2004a].
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Table 1. USGS Land Cover Categories and Corresponding Area and Data Coverages

Coverage, % Number of Data Sample

United Diffuse
LCC Type USGS Land Use/Land Cover States Global Direct Beam Radiation

1 Urban and built-up land 0.34 0.12 33955 2788
2 Dryland cropland and pasture 5.49 5.64 1360282 109361
3 Trrigated cropland and pasture 0.48 1.52 67353 5504
4 Mixed dryland/irrigated cropland and pasture® ... ... ... ...
5 Cropland/grassland mosaic 4.42 2.05 996429 79816
6 Cropland/woodland mosaic 2.26 3.27 521817 42640
7 Grassland 6.10 4.82 1515057 124198
8 Shrubland 8.23 7.23 2199989 180720
9 Mixed shrubland/grassland 0.11 1.02 27646 2288
10 Savanna 0.99 7.13 244138 20146
11 Deciduous broadleaf forest 5.46 2.55 971407 79324
12 Deciduous needleleaf forest” 0.00 0.91 S .
13 Evergreen broadleaf forest 0.08 5.75 3184 264
14 Evergreen needleleaf forest 10.32 2.26 2034863 163861
15 Mixed forest 7.59 3.59 849764 60535
16 Water bodies 43.09 38.90 .
17 Herbaceous wetland® 0.00 0.03 . .
18 Wooded wetland 0.84 0.43 101777 8144
19 Barren or sparsely vegetated 0.46 7.56 46098 3828
20 Herbaceous tundra® . . . .
21 Wooded tundra 3.35 2.99 83332 5716
22 Mixed tundra 0.37 0.97
23 Bare ground tundra® 0.00 0.02
24 Snow or ice 0.03 1.23

Land cover type that is absent in the global.
Land cover type that is absent in the U. S. CWRF domain.

[16] This study uses the top layer (0—10 cm) data for
surface volumetric soil moisture from the two LDAS
products. Although albedo is only directly a consequence
of conditions at the very topsoil layer, vertical diffusion
maintains a link with soil moisture conditions over a deeper
layer. This is shown by Idso et al. [1975], who demonstrated
a good relationship between albedo and 0—10 cm soil
moisture, justifying the use of this layer in the present study.
The NLDAS/Mosaic gives a better resolution over the
United States and is used as the major data set for developing
the soil albedo parameterization, while the GLDAS/Noah
provides data coverage outside of the NLDAS domain.
Given the existence of systematic differences between
NLDAS and GLDAS, discontinuities occur along the south-
ern and northern borders between the two moisture data sets.
Along each border, the belt of five west-east grid rows
inward from the NLDAS data border line is considered as
a transition zone. For all grid rows outward from the border
line along the same south-north grid column, the ratio
between the GLDAS and NLDAS averages within the
transition zone is calculated, and its running mean of 21
west-east points is used to scale the GLDAS soil moisture.
This scaling effectively removes the discontinuity (see
below). To account for the diurnal cycle in correspondence
with the direct albedo dependence on the solar zenith angle,
hourly composites are obtained by averaging in each 16-day
period of the MODIS data.

2.3. CWRF Surface Boundary Conditions

[17] The LCC adopts the U.S. Geological Survey (USGS)
land cover classification, which consists of 24 categories
(http://edcdaac.usgs.gov/glcc/globe int.html). The USGS
land cover data were developed using the Advanced Very
High Resolution Radiometer (AVHRR) satellite-derived

Normalized Difference Vegetation Index (NDVI) compo-
sites from April 1992 through March 1993. Table 1 lists the
percent area covered by each LCC type over the globe and
the CWRF U.S. domain as well as the total number of
quality-controlled data samples (grids plus records) actually
used in the new parameterization development. Note that
the USGS raw data do not contain land cover categories 4
and 20 over the globe, and additionally 12, 17, and 23
within the present CWRF domain. Moreover, categories 22
and 24 are not chosen as the majority type for LCC.
Therefore the final LCC includes only 17 land cover
categories over this CWRF domain [Liang et al., 2004].
The water body category (16) is also discarded in this study.

[18] The FVC is derived, following Zeng et al. [2000,
2002], from the MODIS NDVI product (http://
edcimswww.cr. usgs.gov/pub/imswelcome/). Given its good
agreement with field surveys and observational studies and
small interannual variability, the FVC derived from the
AVHRR NDVI was believed to be robust [Zeng et al.,
2002, 2003]. On the other hand, there exist significant
differences between the NDVI from the MODIS and
AVHRR sensors. The MODIS has generally larger values
than the AVHRR [Gallo et al., 2004], causing an overesti-
mation of FVC. Thus the MODIS NDVI is first scaled
toward the AVHRR data to remove the systematic differ-
ence between the two for each USGS land cover category,
and then used to derive the final FVC [Liang et al., 2004].

[19] The LAI and SAI are defined, respectively, as the
total one-sided area of all green canopy elements and stems
plus dead leaves over vegetated ground area. The opera-
tional MODIS product, MODI5A2 with the reprocess
version 004, provides LAI data at 1-km resolution for every
8-day composite period [Knyazikhin et al., 1999; Myneni et
al., 2002]. We select only the cloud-free pixels that have a
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quality check flag of “best” or “ok” (QC = 0 or 1). Note
that this product exhibits significant differences from that
based on the AVHRR [Zhou et al., 2001; Buermann et al.,
2002]. Apparent discontinuities exist between the two data
sets, where the MODIS values are systematically smaller,
especially for the Midwest cropland. As compared with
measurements at a central Illinois soybean/corn site (by
courtesy of Steven Hollinger of [llinois State Water Survey),
the AVHRR-based LAI estimates are in good agreement and
capture well the peak values during the growing season.
Thus the MODIS LAI is corrected to have the same
monthly mean climatology as the AVHRR for the crop-
land-related LCC categories 2—6 [Liang et al., 2004]. The
corrected LAI samples are averaged for 16-day composites
corresponding to the MODIS albedo data. For each LCC,
SAI is then approximated from LAI as by Zeng et al.
[2002].

3. Methodology

[20] Our main purpose is to develop an improved dynamic-
statistical parameterization for snow-free land surface albedo
that most realistically simulates the MODIS measurements.
Since the parameterization is developed for intrinsic
surface albedos that are not affected by the prevailing
atmospheric conditions, we can directly compare the
modeled values with the equivalent intrinsic albedos
(equation (1)) provided by the MODIS product. Our
starting point is the existing CLM albedo scheme, which
represents the state-of-the-art in current climate modeling.
It specifies separate albedos for bare soil and vegetation
and then determines total surface albedo as an area-
weighted mixture of the two. We follow this approach
to facilitate the new parameterization.

3.1. Old CLM Albedo Scheme

[21] The complete CLM albedo scheme, mainly based on
the work of Dickinson et al. [1990], Verstraete et al. [1990],
and Schluessel et al. [1994], is described in detail by Dai et
al. (online paper, 2001). A summary of the snow-free land
surface albedo portion is given here. For bare soil, albedo is
specified as a decreasing linear function of soil moisture,

Olg vis = Otsgr + Min{ ogqr, max[(0.11 — 0.40), 0]}

Qg nir = 20‘g.vim (2)

where subscript g denotes bare soil or ground; vis and nir
are the visible and near-infrared bands; and 9 is the surface
volumetric soil moisture (m*/m?). The saturated soil albedo
Q4 depends on local soil color that varies from light to dark
according to the global 1° soil classification distribution of
Wilson and Henderson-Sellers [1985]. Note that no
distinction is made between direct and diffuse albedos,
and solar zenith angle dependence is not considered. These
simplifications are not realistic as discussed in section 1. In
addition, the ratio between near-infrared and visible albedos
is fixed as 2, which disagrees with the MODIS data [Zhou et
al., 2003]. The specification of oy, as a function of soil
color is also problematic, since no credible (high-quality
and fine-resolution) color data exist. Currently, the CLM
prescribes o, as a tabular function [e.g., Zhou et al., 2003,
Table 2a].
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[22] The vegetation albedo is defined by a simplified two-
stream solution under the asymptotic constraint that it
approaches the underlying soil albedo or the thick canopy
albedo (specific of vegetation type) or when the local LAI is
close to zero or infinity,

Lgai 0.5
Qupx = Qe |:1 — exp (_ U)XB ):| + Qg \ €Xp |:_ (1 + )Lsai:|
! POl X P

2w Lsai
Qudx = Qe {1 —exp (— %)] + o\ exp(—2Lai), (3)

where superscripts v, ¢, b, and d denote vegetation, thick
canopy, direct beam, and diffuse radiation, respectively; p =
cos(9); Ly,; = LAI + SAI; the single scattering albedo wy, is
prescribed as 0.15 (vis) and 0.85 (nir), and the coefficient 3
is set to 0.5. Note that o,y = o px|=05- By default, the
CLM prescribes the canopy albedo . as tabular functions
of vegetation types [e.g., Zhou et al., 2003, Table 2b]. A big
concern is that the dependence on Lg,; is identical for all
vegetation types and no distinction is made for dense
canopy albedos between direct beam and diffuse radiation.
This is apparently not realistic [Asner, 1998].

[23] The bulk snow-free surface albedo, either direct or
diffuse, is determined by

Qnx = Quafo + Otg)\(l —f)- 4)

Here f, = FVC.

[24] The recent CLM treats the radiative transfer within
vegetation canopies by the full two-stream solution [Dai et
al., 2004], which is computationally expensive. This intro-
duces additional input parameters: leaf angle distribution
factor; reflectance and transmittance separately for live and
dead leaf, visible and near-infrared band. All of these
parameters must be, and currently subjectively, specified
for each of the 24 USGS vegetation categories. They have
presently been tuned to approximate the simplified scheme
of equation (3). Since it is much more difficult to realistically
estimate these extra parameters, we choose equation (3) as
the baseline for new parameterization development.

3.2. New Conceptual Model

[25] Since the structure among surface types varies con-
siderably, it is difficult to develop a universal scheme to
model the surface albedo zenith angle dependence [Briegleb
et al., 1986]. For a semi-infinite plant canopy consisting of
randomly oriented leaves, Dickinson [1983] described the
dependence by o) = a(1 + d)(1 + 2dp) ", where «y is the
albedo for p = 0.5, depending on surface types; d is a fitting
parameter, 0.4 for arable land, grassland, and desert, and 0.1
for all other types. In contrast, Xue et al. [1991] found that
the shape of the diurnal variation of surface albedo resulting
from the two-stream solution of the SiB [Sellers et al.,
1986] is very regular and can be adequately simulated by a
quadratic fit. The MODIS albedo dependence on solar
zenith angle is also approximated by a polynomial in
equation (1) [Lucht et al., 2000]. Thus we choose the
following shape function to depict the p dependence:

Ru‘)\ = C()p,)\ + Clu,)\u + C2|1“>\u25 (5)
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where C;, \ are coefficients depending on spectral bands.
For now, our only concern is the shape, which is assumed to
be the same for all bare soil with or without any type of
vegetation canopy.

[26] Masson et al. [2003] formulated bare soil albedo as a
linear function of the sand fraction, representing soil min-
eral composition, and the relative area of woody and
herbaceous vegetation types, depicting soil organic deposi-
tion. However, we found very little correspondence between
these factors with the MODIS data. As noted earlier, the
CLM saturated soil albedo varies with soil color, for which
there is a lack of credible data. In addition, Tsvetsinskaya et
al. [2002] linked surface albedo with soil classifications and
rock types over arid areas using l-km resolution. This
relationship was not evident in our comparison over the
CWRF 30-km grid mesh between the MODIS albedo and
soil characteristic factors described by Liang et al. [2004].
The coarser data resolution may play a role for the lack.
Hence these factors are not considered in this study.

[27] On the other hand, the dependence on surface soil
moisture has been clearly demonstrated in both observa-
tional and modeling studies (see the introduction). The
CLM adopts a decreasing linear function in equation (2),
which may trace back to Idso et al. [1975], who observed
such relationship for a very thin surface layer (<0.2 cm
thick) but much sharper slopes for thicker layers. (Note
that the top CLM layer is 1.75 cm thick [Liang et al.,
2004].) More recent studies indicated a decreasing expo-
nential function [Duke and Guérif, 1998], which is similar
for different soil types [Lobell and Asner, 2002]. We
therefore choose the following shape function to depict
the 9 dependence:

Rﬂ“n)\ = COﬂ‘T]‘)\ + Cl‘ﬁ,n)\ exp(_CZ'ﬂ,n,)\ﬁ)v (6)

where Cjy,,» are coefficients depending on direct beam or
diffuse radiation (1 = b, d) as well as spectral bands. Again,
this applies for all bare soil with or without any type of
vegetation canopy.

[28] It is interesting to note that decreasing albedo-soil
moisture relationships were also identified from Amazonian
forest data, where no soil is visible from above the canopy
[Culf et al., 1995]. This feature cannot be explained by a
color change of the exposed soil when moist, as it can for
short vegetation canopies. Rather, the decreasing albedo
likely results from a canopy water content increase in
response to a greater soil moisture availability, since leaf
dehydration generally increases reflectance [Mooney et al.,
1977]. Given that no data for canopy water content are
available, we approximate this relationship, if any, by the
soil moisture dependence. This simplification is implied by
assuming the background soil albedo (defined below) as a
function of LCC type.

[20] We can now parameterize the bare soil albedo by the
product of R, » and Ry,

Qghx = Qogp\ [C(/m,b,x + Clopy eXP(‘Qﬂ,h,xﬁ)}
: (1 + Ol c;mf) (7)

Ogd & = Qog.d [C(,m.d,x + Clg.ax €Xp (*Céﬂ,d,x‘(})] )
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where the coefficients are redefined as

Copmx = Coomn(Coonx + C1ﬂ4n4x)71 + Chaxn = 1= Clyoxs
oy = Cloan (Cogn + C1ﬂ7114,x)_1 = Chno
é\‘)‘n_’)\ = sz},n,x, (8)
Ciun = GunCounid = 1,2,
aogsx = (Conpx + Cropxn) Couns
aogax = (Cosan + Croan)-

By this definition, cgg.,x = Ognx|o=0,-0, Which is referred
to as the maximum background soil albedo; Cj, . is
introduced to account for the varying range of soil albedo
[e.g., Duke and Guérif, 1998]; both may depend on LCC
types. As such, the p or U dependence is normalized to a
fractional shape varying between 0 and 1. Later we will
show that this normalization provides a more meaningful
depiction of the shape functions. Note that a distinction is
made for the C{q,n)\ correction between soils of tall trees and
of short vegetation. For those of tall trees (wooded or
forested LCC types 6, 10—15, 18, 21), the correction is
applied only in the vegetated area f, while setting Cjy 5 = 0
over the bare soil portion (1 — f,). This is to account for
likely differences in soil characteristics under trees,
including leaf coverage on the ground (shading the soil
from exposure) and water intake from deep root zones
(weakening canopy sensitivity to the skin soil water), both
of which reduce the albedo dependence on surface soil
moisture as sensed by the MODIS. For the other LCC types,
the Cj,,» correction is assumed uniform over the whole
grid.

[30] Canopy albedo tends to decrease with increasing
vegetation amount due to the high PAR absorption by
plants. Hales et al. [2004] found a decreasing exponential
function of LAI that well reproduces the annual mean
observations. They, however, considered only albedo for
total radiation. Duke and Guérif [1998] showed that, as LAI
increases, vegetation albedo exponentially decreases
(increases) due to enhanced absorption (reflection) of the
visible (near-infrared) radiation. This renders certain sup-
port to the use of equation (3), where vegetation albedo can
increase or decrease with Lgy; depending on whether the
first or second term on the right side of the equation is
larger. It is also important to distinguish characteristic
structure differences between vegetation types. We choose
to use the following general form of vegetation albedo:

[ ( Ab XLsai):|
Qypx = Olep )\ 1 - exp -
v

+ Qg b\ exp[imx(rd + F/))L.\'ai]
v = 0cas[1 = OXD(—2AssLn)] + i P2 L),
)

where the canopy albedo o, and the upward scattering
coefficient A,y are distinguished between direct beam and
diffuse radiation; both also depend on spectral bands and
vegetation types. The factor my = /1 — wy, is to account for
the reduced absorption (and thus higher transmittance) of
intercepted and scattered radiation by non-black leaves
[Goudriaan, 1977]. Our sensitivity experiment (not shown)
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suggests that w,,;; = 0.2 and w,;- = 0.8 yields an overall good
fit for most LCC types. Accordingly, we choose m,; =
0.894 and m,,; = 0.447. The transmittance or extinction
coefficients I',, are defined as

Iy = G(p)/p (10)

1
Iy=p'= 1//0 G (Wwdy,

where G(p) is the projected area of phytoelements in
direction p.. We follow Goudriaan [1977] to fit this factor by
G(p) = @1 + Pap. (11)

[31] Goudriaan [1977] specified @, = 0.877(1 — 2¢y),
and ¢; = 0.5 — 0.633x — 0.33?, where  is an empirical
parameter representing the departure of leaf angles from a
spherical or random distribution (=0), varying from —1 for
vertical leaves to +1 for horizontal ones. We, however,

choose ; and ¢, as free parameters to fit the MODIS data.
Equation (10) can now be expressed by

Ty =y, Lq=!, p; =0

Ty =@, Tg=2¢p, [ =0
G +¢,\ "~

r, = W Fd:wz(l—ﬂlnu) e A0,y £0.
B P2 P1

(12)

[32] We can see that the CLM equation (3) is a special
case of the general form equation (9) as if ¢; = 0.5, ¢, =
0 (i.e., x = 0, indicating spherical distribution leaves),
and Qe = Qe g = Qgxe Ay = waB/aey (ignoring
distinction between direct beam and diffuse radiation).

[33] Initial diagnosis of MODIS data for FVC greater
than 0.6 indicates that there exists a tendency for visible
(near-infrared) albedo to decease (increase) with LAI and
that such dependence varies with LCC types. This is
consistent with the dominant effect of plant enhancement
on absorption (reflection) of visible (near-infrared) radia-
tion. The second term in equation (9) simulates the
absorption effect through the combination of the L,
exponential decay of transmittance and ground reflection,
while the first term is supposed to depict the plant
reflection effect. The A, term, however, considers only
the scattering increase as radiation passes through the
depth of canopy. The direct amplification of reflection by
canopy greenness must be represented in o, . We
choose a linear shape function to describe the canopy
albedo dependence on greenness,

ey = Qe |1+ CL, 5 (GRN — 1)} :

h

(13)

where GRN is the canopy greenness and is currently
approximated with local LAI divided by the maximum over
all locations having the same LCC type. This approximation
may not represent the actual greenness but a simple
numerical factor as a normalized LAI that is effectively
linked with canopy albedo. For simplicity, we ignore the
dependence in the visible band (N = vis), where the
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scattering effect is small. By definition, for the near-infrared
band (\ = nir), C.,,x > 0 and cge., 5 = O x| GrN=1, Which is
referred to as the maximum background canopy albedo.
Both C’ e and o x may depend on LCC types.

[34] Our main goal is to search for the best set of
parameters q;L,Xn le‘ﬁm)\a le),'r],)u CZ?,T],)\) Qogmxs Qoe,mno
A, and ; that most realistically capture the predictable
dynamic variations of snow-free land surface albedo
inherent in the MODIS data. These parameters also vary
with LCC types (except Cj,x, Cjo.») but are not a direct
function of location. Many other factors, however, are
currently not measurable or predictable. In particular, local
soil characteristics (e.g., soil color, surface roughness) and
canopy structures (e.g., mosaic distribution of multiple
vegetation categories) have great impacts on surface albedo
and are yet not represented in LSMs. We therefore introduce
a soil albedo localization factor (SALF) to depict the static
portion of albedo that is geographically dependent.
Equation (4) now becomes

Qn\ = av,w],);f{z + @g7n7x(1 _fv)
(14)

r_
OL“»\ = Yy

where v, x = SALF varies with geographic locations and
spectral bands, and differs between direct beam and diffuse
radiation. The v,y is the dynamic component of the new
parameterization that represents the predictable albedo
dependencies on solar zenith angle, surface soil moisture,
land cover category, fractional vegetation cover, leaf plus
stem area index, and greenness. The final albedo (xﬁ]ﬂx
incorporates a statistical correction for other unexplained
but accountable static effects specific to local surface
characteristics.

[35] Considerable spatial variability in surface albedo
over deserts and semideserts has been observed [Pinty et
al., 2000; Strugnell and Lucht, 2001; Tsvetsinskaya et al.,
2002; Zhou et al., 2003]. The spatial variability is more
readily represented by the SALF rather than soil color or
texture types which lack global measurements. The SALF is
a regression fit that minimizes the modeled and measured
albedo statistics, and thus provides a direct and most
realistic way to depict the static albedo effect of surface
characteristics.

3.3. Solving the Nonlinear Constrained Optimization
Problem

[36] The new conceptual model, as described in equa-
tions (7)—(14), requires specification of eight groups of
parameters (C/,‘pu,k’ C;'f),n,ka Cg),n,)u C/c,n)\a Qogmn Qoen s
Ay and ) to define the dynamic component of albedo
temporal and spatial variations, which is corrected by local
Yn.x to account for other unresolved effects that are specific
to each geographic location. Given 16 LCC types with
vegetation canopies, there are 304 independent parameters
of the dynamic component and four geographic distribu-
tions of localization factors for the static contribution. It is
impossible for any optimization solver to faithfully estimate
all these unknowns at once. Our strategy is to use a subset
of the data that pertain to the physical regime dominating a
specific group of parameters and solve the optimization
problem group by group in a pre-sorted sequential order.
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Figure 1. The shape functions define the normalized soil
albedo dependence on (a) solar zenith angle and (b) surface
moisture.

[37] The optimization solver used in this study is the
FORTRAN Feasible Sequential Quadratic Programming
(FFSQP) [Zhou et al., 1997]. The FFSQP is designed to
find the optimal solution for the minimization of the
maximum of a set of smooth objective functions subject
to equality and inequality constraints, linear or nonlinear,
and simple bounds on the variables. It requires the accurate
definition of the objective functions and constraint func-
tions, and, from our own experience, the gradients of these
functions to achieve a robust solution. Most of the param-
eters to be estimated have distinct physical meanings and
thus must be objectively constrained. The FFSQP solver
finds the shortest path in the multiparameter space. This
path is only one of many numerical solutions satisfying the
specified functions and by itself preserves no physical
meaning of the parameters except their specified ranges,
gradients, and other mathematical constraints. As such,
careful pre-thinking of the physical representation of each
parameter must be taken and conceptualized into the math-
ematical constraints to increase the likelihood that the
resulting solution reflects a large part of the true dynamical
processes. We take the following steps to solve the system.
3.3.1. Bare Soil Albedo p. Dependence

[38] This is the simplest problem, involving only the
MODIS black-sky albedo data. We assume that all grids
having FVC - LAI smaller than 0.15 represent the group of
samples for this problem’s solution. The objective function
for each spectral band is defined as

Ne

1 2
= Z u\b)\_ )

g 1

Fx,bare i, X (15)
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where oy 45 and R, 5, are calculated by equations (1) and (5),
and the summation is over hourly data of all the grids
selected, with N, total number of samples. The gradients of
the objective function to individual Cj, 5|01, can be
readily derived. Given these functions, the FFSQP provides
the optimization solution of Cj, y separately for visible and
near-infrared bands.
3.3.2. Bare Soil Albedo 9 Dependence

[39] This problem, still relatively simple, involves the
MODIS black-sky and white-sky albedo data as well as
NLDAS soil moisture outputs. The data grids are the same
as in section 3.3.1. The objective function for each spectral
band, direct beam or diffuse radiation, is defined as

N 2

Fi xpare (Ciopn) = E (Ocst;,?x - Rt),m) )
g 1

!
Qg px = s, >\/Ru \ (16)
N,

1 - 2

Fd,x,bare ]Mx = E Qs — Ry d,x) ,

g 1

where o, x, R, » and Ry, y are calculated by equations (1)
and (5)—(6). Note that o, is first normalized by the
known R, via equation (5) to remove the p dependence.
The gradient of the objective function to each individual
Cjomlj=0,12 can be easily derived. Given these functions,
the FFSQP provides the optimization solution of Cjy,
separately for direct beam or diffuse radiation and visible or
near-infrared band.

[40] Atthis point, the normalized shape functions for p and
¥ dependence can be constructed by solving equations (7)—
(8) through minimization of equations (15)—(16).
These functions (Figure 1) are assumed to be identical for
all LCC types, and the corresponding coefficients are listed
in Table 2. Although equation (5) was solved separately for
visible and near-infrared bands, the resulting normalized
dependence shape functions (see equation (7)) are almost
identical between the two. This is consistent with the fact
that the soil scattering property changes little between
spectral bands [Bdnninger and Fliihler, 2004]. Similarly,
equation (6) was solved individually for direct beam or
diffuse radiation and visible or near-infrared band, and the
resulting normalized O dependence shape functions (see
equation (7) with i, = 0) closely resemble each other
between direct beam and diffuse radiation for either visible
or near-infrared band. This agrees with the fact that the
albedo dependence on soil moisture is determined by the
absorption property of water, which differs little between
direct beam and diffuse radiation. These results indicate that
the optimization solutions are robust. For consistency, we
therefore remove the dependence of Cj, on X and that of

Table 2. Coefficients of the Normalized Shape Functions for Soil
Albedo p and 9 Dependence

p Dependence O Dependence

X\ m C{u‘ N C&u N C;\) mn C‘;ﬂ n
Visible direct —-0.718 0.346 0.672 14.296
diffuse 0.686 14.588

Near-infrared direct —0.732 0.362 0.629 11.436
diffuse 0.650 11.857
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Table 3. Parameters of the Dynamic Component of the New Albedo Parameterization That Depend on LCC Types
Background Soil Albedo Background Canopy Upward Scattering Canopy
Qg Albedo cgeny Coefficient A,y Structure Chux Chaux
Dir, Dif, Dir, Dif, Dir, Dif, Dir, Dif, Dir, Dif, Dir, Dif, Dir,  Dif,

LCC  Vis Vis Nir Nir Vis Vis Nir Nir Vis Vis Nir Nir o)) P Nir Nir Vis Nir

1 0.190 0.130 0.282 0.180 0.047 0.031 0.348 0.268 0.109 0.259 0.168 0.413 0.060 0.233 0.147 0.130 0.471 0.528
2 0.267 0.165 0.562 0.267 0.042 0.031 0.331 0.279 0.129 0.636 0.172 0.839 0.006 0.187 0.181 0.145 0.224 0.105
3 0.284 0.196 0.581 0387 0.022 0.026 0.296 0.246 0.002 0.023 0.143 0.145 0.000 0.112 0.296 0.178 0.239 0.199
5 0.248 0.174 0.576 0.389 0.035 0.026 0.309 0.229 0.061 0.123 0.134 0.402 0.004 0.181 0.255 0.194 0.328 0.250
6" 0.181 0.125 0.346 0.150 0.034 0.028 0.287 0.256 0.188 0.369 0.150 0.716 0.000 0.158 0.250 0.172 0.351 0.650
7 0.288 0.205 0.507 0.343 0.022 0.022 0.281 0.200 0.002 0.002 0.462 0.361 0.000 0.225 0.158 0.041 0.339 0.175
8 0315 0.227 0.541 0.383 0.061 0.022 0.262 0.200 0.010 0.002 0.020 0.044 0.045 0.257 0.000 0.000 0.331 0.356
9 0.190 0.125 0.344 0.262 0.046 0.036 0.420 0336 0.085 0.225 0.162 1.077 0.035 0.320 0.310 0.336 0.528 0.483
10 0.346 0.202 0415 0.242 0.073 0.027 0325 0.309 0.044 1.000 0254 0.769 0.039 0.235 0.026 0.109 0.374 —0.131
11" 0.388 0.207 0.606 0.271 0.054 0.032 0.420 0.350 0.097 1.000 0.141 4.000 0.114 0.255 0.192 0.227 0.686 0.089
13" 0.326 0.184 0.495 0388 0.040 0.025 0.408 0.313 0.098 1.000 0.098 2.110 0.139 0.180 0.266 0.313 0.686 0.650
14* 0301 0.213 0.403 0.258 0.051 0.070 0342 0.254 0.036 0.024 0.095 4.000 0.051 0.193 0.199 0.208 0.686 0.429
15 0220 0.125 0265 0.150 0.042 0.022 0374 0.277 0.053 1.000 0.090 4.000 0.133 0.026 0.191 0.216 0.686 0.650
18" 0.394 0.282 0.520 0.353 0.040 0.022 0291 0.244 0.060 0.148 0.126 0.634 0.078 0.257 0.096 0.158 0.590 0.174
19 0388 0.282 0.589 0.424 0.038 0.022 0.200 0.200 1.000 0.002 4.000 4.000 0.141 0.157 0.000 0.019 0.227 0.178
217 0459 0319 0.554 0.382 0.026 0.022 0.259 0.200 0.029 0.039 0.106 4.000 0.137 0.225 0.119 0.169 0.686 0.405

*Tall tree categories where Cj.,,» correction is applied only in the vegetated portion of a grid; for others, the correction is applied uniformly over the

whole grid. The boldface values are those equal to the imposed numerical bounds for the optimization solver.

Cjy.n and Cy . » on 1 in the subsequent solutions. Note that
Qlgn,» and C{M)\ remain to be estimated later as a function
of LCC type.

[41] We realize that the MODIS data are unreliable near
dusk or dawn (6 > 70°) when atmospheric correction of the
input data degrades and the BRDF models themselves grow
weak. To derive the complete shape function for the p
dependence, we have used all daytime data with p > 0.01.
As such, some MODIS data used may not be realistic. This,
however, may have little impact on the result, since the
shape function is not sensitive for small p where, for
example, the difference between our scheme and that of
Dickinson [1983] is negligible (Figure 1a).

3.3.3. Vegetation Dependence

[42] This is the most complicated problem, involving all
data and all parameters of the dynamic component. To
simplify the system, we solve the problem for each LCC
type. All hourly samples over all grids that have the same
LCC type are collected as a single group for the FFSQP to
solve the corresponding vegetation-dependent parameters.
Since =1, depend only on canopy structure and are
identical for direct beam or diffuse radiation and visible or
near-infrared band, we choose to solve them through the
diffuse albedo because of its p independence. To ensure
consistency between the visible and near-infrared bands, a
joint objective function for each LCC group is defined as

/ /
Faveg (kPjy Qog.d x> %0c.dns Co ans Co g Ad})

1 Ny nir

= N Z Z (OLS’LQ\ - Otd,x)zv

1 X=vis

(17)

where oy, and oy are calculated by equations (1) and
(14), respectively; N, is the total number of samples for this
LCC group (see Table 1). The gradients of the objective
function to all individual parameters listed in the function
can be derived. Important constraints include 0.001 < A
S 10, 0.001 S Ad,nir S 40, 0.15 S OLOg,d,m'r Z l'ZOLOg,d,visa
020 S OLOC,d,m‘r Z 1-20L06,d,vis> and 0022 S OLOC,d,viS S 007
These limits are chosen somewhat subjectively. It is

reasonable to assume that the upward scattering effect is
less in the visible than near-infrared band, so a larger A
upper bound is set for the latter (greater than 4.0, which
makes no difference due to the exponential decay), and that
canopy reflects more near-infrared radiation than bare
ground, so a bigger lower bound is assigned for the former.
The ratio factor 1.2 is adopted from the raw data screening
procedure (section 2). Given these conditions, the FFSQP
provides the optimization solution of ;| », together with
initial estimates of other parameters listed.

[43] Given the known ;, the final estimates of all other
parameters can be obtained by solving the optimization
problem separately for direct beam or diffuse radiation and
visible or near-infrared band. The objective function for
each LCC group is now defined as

/ /
Fn,x,veg (0608,7]9\7 Qoe,n N Cﬁgn)d Cugn)d A”,x)

Ny

1 ,
= ﬁ Z (OLSJ])\ - ()Ln,x)z.

Vo

(18)

For both direct beam and diffuse radiation, the solution
begins with the visible band, where we require Cﬁm,m =0,
0.001 < A'r],vis < 10, Qog,m,vis > 0125a 0.022 < Qoc,d,vis <
0.07, and 0.022 < opepvis < 0.08. The near-infrared band is
then solved with additional constraints C’c,n,m-, >0, 0.001 <
Anir < 4.0, 0.15 < qggmnir = 1.200gmvi5» and 0.20 <
0gemnir < 0.42. Note that the upper bounds for oy, ., are
subjective due to the lack of observations. Sensitivity tests
show that decreasing these bounds by 15% does not
significantly change the outcome. Direct measurements are
needed to specify realistic o,y x and their bounds.

[44] Table 3 lists all parameters that depend on LCC
types. Note that the solution for . is not well defined,
especially for diffuse radiation in both visible and near-
infrared bands where many LCC types have values at the
respective numerical bounds. Several A, values are given
with the upper limits for diffusive radiation. The Cj,
solution reaches the upper bound for soils beneath tall
trees except Savanna. This indicates the lack of albedo
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dependence on surface soil moisture, as effectively sensed
by the MODIS. Recall that no such correction is made over
the bare soil portion for these LCC types. The dependence is
also negligible for the urban and built-up land category,
which seems to agree with our physical expectation since
the surface materials are dominated by impervious man-
made concrete and asphalt (roads, plazas, buildings). In
addition, this category has soil albedos among the lowest
values. Brest [1987] found that rural vegetation has higher
near-infrared albedos than most urban surface materials.
Our time series analysis of MODIS data further shows that
urban visible albedos have smaller peaks and flatter
variations than surrounding vegetated categories, although
the averages are larger in the former. It is thus reasonable for
urban and built-up areas to have smaller maximum back-
ground soil albedos than vegetated ones. (Here, for
convenience, “soil” refers to the mixture of all ground
surface (natural and impervious man-made) materials.)
Other parameters are well within the numerical bounds.

[45] Although the model was carefully developed with
full consideration of important physical processes, it must
be cautioned, however, to automatically draw physical
interpretation for the solution of individual parameters. As
emphasized earlier, the FFSQP solution only gives the
shortest path in the multiparameter space to minimize the
objective function in equation (18). For each LCC type, it is
the whole set of parameters listed in Table 3 that makes the
model equation (9) produce the minimum variance between
oy and o,y as integrated over the entire group. A bias in
one parameter may be compensated for by changes in others
to maintain the minimization. This is an expected conse-
quence of the optimization solution for an overdetermined
multiparameter model. Furthermore, equation (9) is a still-
simplified model of the complex reality. Individual model
components may compensate each other in representing
certain dependencies. For example, when the dependence
of albedo variation range on the LCC type is removed
(Cﬂnx 0), the resulting A,y of the visible, direct beam
reaches the upper limit for all LcC types. This indicates that
C@,,m can mimic the scattering effect of the A,y term, albeit
only in the case of the visible, direct beam and having a
lower correlation score.
3.3.4. Localization Factor

[46] This is the final step to incorporate the remaining
local contribution from distinct surface characteristics. The
objective function is defined at each CWRF grid as

2
!
)

where N, is the total number of samples or records for a
specific grid. One constraint is 0.8 < vy, \ < 1.2. Similar to
the steps in sections 3.3.1—-3.3.3, it is important to explicitly
provide the correct gradient of the objective function to each
parameter, and here at every grid, for the FFSQP to give a
robust solution.

[47] Figure 2 shows the vy, geographic distributions. A
striking feature is that the localization factors closely
resemble each other between direct beam and diffuse
radiation for either visible or near-infrared band. The spatial
pattern correlation coefficients over land areas of the entire

1 X

Fiyxgrid (“/,,,x) = ]Vt Z (omm _

1

(19)
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domain are over 0.97 for both bands. Even between the
visible or near-infrared bands, the general patterns are
similar, except over the far northwest corner of the domain
(Washington, British Columbia) dominated by evergreen
needleleaf forests, where adjustments are upward in the
former and opposite for the latter. The result indicates that
the corrections tend to be systematic. The spatial variability,
however, is not trivial. Upward adjustments are applied in
the southeast United States, an area with predominant mixed
forests but containing large fractions of evergreen forests.
Upward adjustments also prevail over the north-central
United States, covered by croplands mosaic. In contrast,
downward adjustments are made in the western United
States, primarily in the dry intermountain basin areas where
shrublands are most popular but coexist with other greener
vegetation types. Reductions also occur in Ontario-Quebec
along the belt of evergreen needleleaf forests, which include
fractions of mixed forests dominated on both sides. All
these regions are identified with a small fraction (often less
than 15%) covered by the respective dominant LCC type,
while the remaining large portion of the grid is a mixture of
other vegetation types. The result suggests that the locali-
zation factor is partially caused by the use of a single
dominant LCC type in a grid while accounting for contri-
butions from other types. Another significant contributor to
the geographic distribution of the localization factor is
spatial variability of soil moisture.

[48] Only the NLDAS/Mosaic soil moisture (mostly over
the United States) is used for developing the dynamic
component of the new parameterization (o). Hence the
corrections over northern Canada and southern Mexico
(except the U.S. borders) are made to provide the U.S.-
based dynamic component with local surface character-
istics, where soil moisture is replaced by the GLDAS/Noah.
The GLDAS soil moisture scaling based on the two
transition zones (section 2) seems effective such that dis-
continuity is not noticeable in Figure 2. This applies to other
diagnostic fields to be discussed in the next section. In
addition, <, reaches either the lower (0.8) or the upper
(1.2) bounds in approximately 7—9% of the total land area,
most often over the Rockies and Appalachians.

4. Comparison Between Simulations and
Observations

[49] Figure 3 shows correlation coefficients and relative
errors of direct and diffuse albedos at the visible and near-
infrared bands simulated by the old CLM albedo scheme
equations (2)—(4) as compared with MODIS data for each
LCC type. The correlation and bias are calculated by

N

§ Qp\ — 0‘1]>\ OLs,n)\ - as,’q,x)
1

Rn,k =

N

N
2 _ 2
§ Qn X — OLn X § Qsm\ — &s,r],x)
1

1

Eyy =~ Z |0‘nx 0‘SM| a;l

N
N
[SRRIDN N 1

where N is the total number of samples in the summation.
Here N = N,, using all samples for each LCC group. Clearly,
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Figure 2. Geographic distributions of the localization factor v, for (a) direct beam visible band (dir,
vis), (b) direct beam in the near infrared band (dir, nir), (¢) diffuse radiation in the visible band (dif, vis),
and (d) diffuse radiation in the near infrared band (dif, nir).

the old scheme produces very poor results, with group
correlation coefficients of —0.57—0.71 and relative errors of
18—140%. The skill is especially bad in the near-infrared
band for both direct beam and diffuse radiation, where
correlation coefficients are large negative or near zero for
most land cover categories; the best correlation is 0.45 for
shrubland diffuse albedo. Correlations generally increase in
the visible band, except for wooded wetland diffuse albedo.
On the other hand, relative errors are substantially greater in
the visible band than in the near-infrared band. They are
extremely large for wooded tundra, mixed forest, and
mixed shrubland/grassland, consistently in all four albedo
components.

[s0] Figure 4 compares the dynamic component (i.e.,
before the localization) of the new albedo parameterization
equations (7)—(14) with MODIS data. Relative to the old
scheme, the new model significantly reduces relative errors
in all four albedo components for all LCC types. This is
expected as a direct result of the optimization solution that
minimizes the model-data deviation. Relative errors now
range from 8 to 42%. The largest improvement is obtained
for wooded tundra, mixed forest, and mixed shrubland/
grassland, whose errors for the old scheme are excessive.
More importantly, correlation coefficients are greatly en-
hanced for all four albedo components, especially in the
near-infrared band. Correlations are now in the range of

0.39-0.88. The lowest correlations are identified with
diffuse albedo in the near-infrared band, although its rela-
tive errors are among the smallest. Note that relative errors
measure the systematic model bias, which could be subjec-
tively removed by simpler methods without considering the
temporal or dynamic structure. These methods would not
attain high correlations, nor does the optimization solution
by design ensure that this will occur. The significant
correlation gains imply that the new conceptual model does
capture the dominant variables that control the dynamic
variations of surface albedos. This becomes more obvious
below.

[51] The localization further reduces relative errors of the
new model across the board (Figure 5). The range now falls
within 5-37%. The reduction is most remarkable for
wooded tundra, barren or sparsely vegetated, and shrubland
categories, indicating that these types contain substantial
inhomogeneity. In addition, correlation coefficients are
uniformly high in the range of 0.69—0.94. The improvement
is more pronounced in the near-infrared band than in the
visible band, suggesting more dominant local control in
the former. Given that the static -y, x does not improve the
temporal or dynamic structure, the correlation increases
after the localization is purely attributed to the enhanced
spatial coherence of the albedo climatological means
between the model and data.
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Figure 3. Bulk correlation coefficients (open bars) and relative errors (solid bars) of the four albedos
(see Figure 2 for the convention of abbreviations) simulated by the old CLM albedo scheme as compared
with MODIS data for each LCC type. A number is shown if the value exceeds the scale.

[52] The bulk (temporal plus spatial) correlation before
the localization is a composite representation of the point-
wise correlation as integrated over all grids of the same
LCC type. The localization reduces the overall pointwise
deviation of the model values from measurements, and
consequently increases the bulk correlation. The pointwise
(temporal) correlation is a direct indication of the predictive
skill of the dynamic component. The pointwise correlation
coefficient and relative error are calculated by equation (20)
using only temporal records at each grid, i.e., N = N,. Given
the data quality control, N, vary geographically and differ

between the four albedo components. Each MODIS black-
sky o> 1s the direct beam albedo at each single solar
angle while the white-sky o4 is the integral of all the
black-sky possibilities and thus represents the diffuse albedo
under an isotropic illumination. Thus, direct albedos have
approximately 12 times more samples than diffuse albedos.
We assume that each 16-day composite is independent, i.c.,
having 1 degree of freedom. During the entire 2000—2003
analysis period, almost every grid has more than 45 com-
posites available with good quality data. Assuming this
minimum number of degrees of freedom (43), the correla-
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Figure 4. Same as Figure 3 but simulated by the dynamic component of the new parameterization

(before the localization).

tion threshold for statistical significance at the 95% confi-
dence level is 0.26. Below, we consider correlation coef-
ficients greater than 0.26 are statistically significant for all
four albedo components.

[53] Figure 6 depicts the geographic distributions of
pointwise correlation coefficients between albedos observed
by MODIS and simulated by the new parameterization.
Recall that the distributions are identical before and after the
localization since <y, x are static. Strikingly, correlations for
direct beam albedos are greater than 0.50 almost every-
where and mostly higher than 0.75, especially in the near-
infrared band. Correlations generally decrease for diffuse

radiation albedos. In the visible band, large reductions occur
over the western United States, primarily in the Rockies and
intermountain basins, and over the southeast United States.
Similar changes are found in the near-infrared band, where
reductions are more severe and extensive over the western
United States while much smaller in the southeast United
States. This band also has substantial reductions over
southern Canada. In a large portion of these areas, correla-
tions drop below the statistical threshold. Unfortunately, we
cannot at this time offer a reasonable explanation why these
reductions occur and whether they are caused by input data
problems or incomplete model processes. For example, we
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Figure 5. Same as Figure 3 but simulated by the new parameterization (after the localization).

may argue that low correlations over mountainous regions
could result from poor NLDAS soil moisture simulations
and MODIS albedo retrieval qualities associated with the
orographic shadow effect (causing biases in rainfall and
solar radiation, respectively). Such an effect should, how-
ever, be seen consistently for both direct beam and diffuse
radiation in the visible (mostly absorption) or near-infrared
(largely reflection) band. This is not the case, since reduc-
tions are identified from direct beam to diffuse radiation.
[s4] Figure 7 presents the geographic distributions of
pointwise relative errors between the dynamic component
of the new albedo parameterization and MODIS data. One
striking feature is that the patterns of relative errors are

remarkably similar between direct and diffuse albedo in
either the visible or near-infrared band. The spatial pattern
correlation coefficients over land areas of the entire domain
are over 0.95 for both bands. In the near-infrared band,
relative biases are below 30% almost everywhere and
mostly smaller than 15%. In the visible band, relative
errors of greater than 30% occur over most areas of
southern Canada (except north of Montana-North Dakota)
and the northwest United States. For all four albedo
components, the localization further reduces errors as
designed (Figure 8). The near-infrared band has errors
under 15% almost everywhere. Although general reduc-
tions also happen in the visible band, relative errors remain
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Figure 6. Geographic distributions of pointwise correlation coefficients (x100) between albedos
observed by MODIS and simulated by the new parameterization (see Figure 2 for the convention of
abbreviations). Values below the statistical significant threshold (26) are distinguished by the gray color.

high over southern Canada and northwest United States.
We speculate that these large errors are likely caused by
snow contamination on MODIS retrieval. Note that Cana-
dian and/or winter data are used in the diagnosis but the
majority of them are excluded from the model develop-
ment. Since the MODIS data quality control is based on
the dominance in a 16-day window, some ‘‘snow-free”
pixels may still be contaminated. Because vegetation
albedo is much smaller in the visible band than in the
near-infrared band while snow albedo has a relatively
small difference between the two, any snow contamination
may greatly enlarge relative errors in the visible band but
less so for the near-infrared band where vegetation and
snow albedos are more similar. Removal of winter data
from the diagnosis does largely reduce these errors.

5. Parameter Sensitivity

[s5] Given the excellent performance of the new model
discussed above, a question arises whether all parameters
are statistically significant or some could be removed to
have a more stable but equally skillful scheme [Schluessel et
al., 1994]. We have taken the bottom-up approach, starting
from the simplest formulation with the least number of free
parameters and gradually increasing the complexity by
inclusion of more physically important variables, to build

the new model equations (7)—(14). During the course of the
development, numerous sensitivity experiments were con-
ducted to ensure the uniqueness of each variable and
parameter. Rather than comparing the full model with a
simplified version (by eliminating some variables so that all
parameters must be re-derived), we believe it is more
important to determine how much each parameter contrib-
utes to the overall model skill. We therefore apply the
complete model to conduct diagnostic analyses, each incor-
porating one single change of the following: (1) o,y 1S set
to the mean value of all LCC types; (2) cug.n,x is set to the
mean value of all LCC types; (3) A, is set to the mean
value of all LCC types; (4) Cz/'u,k = 0, no soil albedo
dependence on solar zenith angle; (5) Cy,,» = 0, no LCC
type correction to soil albedo dependence on surface
moisture; (6) C'Z,M’x = 0, no soil albedo dependence on
surface moisture; (7) C.,x = 0, no canopy albedo
dependence on greenness; (8) ; = 0.5, ¢, = 0, assuming
spherical distribution leaves as in the old CLM scheme; (9)
soil albedo dependence on daytime-mean cosine of solar
zenith angle; and (10) soil albedo dependence on time-
averaged surface moisture. Except for the specified change,
all other parameters are identical and are defined in Table 3.
Hereinafter, each diagnostic analysis is referred to as “E”
followed by the corresponding exception number listed
above. For simplicity, we adopt the gross correlation
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Figure 7. Geographic distributions of pointwise relative errors (%) between the dynamic component of
the new parameterization before the localization and MODIS data (see Figure 2 for the convention of

abbreviations).

coefficient and relative error as the measure of importance.
They are calculated by equation (20), where N equals the
sum of N, over all LCC types. Note that the bulk mean of
each group having the same LCC type is first removed from
each sample of the group. These departure values are then
used in the calculation of equation (20).

[s6] Figure 9 summarizes the diagnostic results using the
dynamic component of the new parameterization (i.e.,
before the localization). Those of the full model and the
old CLM scheme are also shown for comparison. Without a
change, the new model has gross correlation coefficients of
0.57—-0.71 and relative errors of 17-26%, varying with the
four albedo components. This is a substantial improvement
over the old CLM albedo scheme, which has gross values of
0.03-0.32 and 37-71%, respectively.

[57] The relative contribution or sensitivity of an individ-
ual parameter differs between the four albedo components.
For direct beam albedo in the visible band, the biggest
contribution to the dynamic component (as measured by the
correlation score) is assuming nonspherical distribution
leaves. If otherwise (E8), the correlation drops by 0.20
while the relative error rises by 19%. The second largest
contributor is the inclusion of soil albedo dependence on
solar zenith angle. Without this (E4), the correlation is
reduced by 0.11 and the error is increased by 23%. The
correlation difference between E9 and E4 is tiny, indicating
that the dynamic albedo dependence on solar zenith angle is

dominated by the diurnal cycle while the annual cycle
contributes little. The inclusion of the annual cycle, how-
ever, has a noticeable reduction in the relative error (21%),
suggesting its large role on albedo magnitude. The third
important factor is to account for the LCC type correction in
soil albedo dependence on surface moisture. Excluding this
correction (ES) causes a correlation decrease by 0.10 and a
small error increase of 7%. If soil albedo dependence on
surface moisture is totally removed (E6), relative error
jumps substantially by 51%, although the correlation de-
crease remains about the same. This indicates the impor-
tance of soil moisture in accounting for albedo spatial
inhomogeneity (see below for further discussion along with
the E10 result). Similarly, the A, effect is mainly on
albedo inhomogeneity; the use of a uniform value indepen-
dent of LCC types (E3) produces a 12% larger relative error.
The least sensitivity is identified with oy, primarily
because of its relatively small variation across the LCC
types.

[s8] For diffuse beam albedo in the visible band, the
sensitivity to individual parameters is quite similar to direct
albedo. One exception is that Cj, » (E4) and the removal of
the solar zenith angle diurnal cycle (E9) have no effect as
designed. Note that for both direct and diffuse albedos,
C..n» = 0 (E7) is prescribed and hence has no impact in the
visible band. For direct beam albedo in the near-infrared
band, parameters Cj,, A,y and Ch, are among the
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Figure 8. Same as Figure 7 but for those after the localization.

largest contributors and have close sensitivities. If changed
from the original design (E4, E3, E6), they decrease the
correlation by 0.13 and increase the relative error by 16%.
The remaining most sensitive parameter is ;; a spherical
distribution assumption (E8) leads to a correlation drop by
0.08 and a relative error rise of 15%.

[s9] As noted previously, the dynamic component of the
new parameterization has the lowest skill for diffuse albedo
in the near-infrared band, as compared with the other three
albedos. The sensitivity to certain parameters is also greater.
The biggest contribution is to include canopy albedo de-
pendence on greenness. Without this (E7), the correlation is
reduced by 0.37 and the error is increased by 39%. The
second largest contributor is to incorporate soil albedo
dependence on surface moisture. If removed (E6), the
correlation drops significantly by 0.25 while the relative
error rises by 23%. The result is a marked contrast to the
visible band, where this soil moisture dependence contrib-
utes mostly to the relative error rather than the correlation.
The third important factor is assuming nonspherical distri-
bution leaves. If otherwise (E8), the correlation decreases by
0.07 while the relative error increases by 11%. Parameters
Qlogn e A and Cy , x are the remaining large contributors
and have close sensitivities. If changed from the original
design (E2, E3, ES), they decrease the correlation by 0.05
and increase the relative error by 8%.

[60] The localization yields an overall reduction in the
relative error, which falls within 11-21% for the new model
using the full set of parameters (Figure 10). Not surpris-

ingly, the localization may compensate for the loss by
removing a dynamic factor. A large portion of the dynamic
component can be mimicked by applying statistical correc-
tions. Our long-term goal, however, is to develop the
dynamic component to capture, as much as possible, the
dominant physical processes that govern most temporal and
spatial variations as observed, while minimizing any un-
explained statistical corrections. When accomplished, such
a dynamic component can be applied alone without loosing
noticeable skill. The existence of large differences between
the results before and after the localization (Figures 9—10)
implies that there still remains much unknown and the
dynamic component of the new model can be further
improved. Note that we have carefully constructed the
conceptual basis of the model with full consideration of
important physics to increase the likelihood that the
FFSQP solution represents a large part of the true dynamic
processes. The results of Figures 9—10 can be used to
formulate hypotheses for further refinement of the dynam-
ics to be tested through model sensitivity studies, field
experiments, and more refined data analyses.

[61] The gross correlation coefficient and relative error
are not effective measures for differentiating the relative
contributions of spatial versus temporal variability of sur-
face moisture to albedo variations. Both Figures 9 and 10
show that the differences between E10 and the full new
model are very small, suggesting that the impact of soil
moisture temporal variability may be negligible. This is
actually not the case, but results from a cancellation of
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Figure 9. Comparison of gross correlation coefficients
(x100) and relative errors (%) as simulated by the old
scheme (CLM) and the dynamic component of the new
parameterization using the full set of the parameters (NEW)
as well as sensitivity diagnoses with exceptions (see text for
detail).

substantial soil moisture variability between all grids of the
same LCC type. Figure 11 compares the spatial frequency
distributions of pointwise temporal correlation coefficients
and relative errors between E10, E6, and the full new model
before the localization. The removal of soil moisture tem-
poral variability (E10) has little effect on the frequency
distribution of relative errors for all four albedo compo-
nents. This removal, however, has pronounced impacts on
correlation coefficients. For direct albedos, the shape of the
frequency distribution is shifted toward smaller correlations,
a manifestation of systematic reductions in temporal corre-
lations. For diffuse albedos, the actual frequencies are
generally reduced in the correlation range between 0.40
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and 0.80, indicating that a greater number of points result in
lower temporal correlations. In both cases, the result clearly
demonstrates the importance of soil moisture temporal
variability in determining dynamic albedo variations, espe-
cially over sparsely vegetated areas such as the Rockies and
intermountain basins. On the other hand, a comparison
between E10 and E6 shows that soil moisture spatial
variability, mainly determined by local soil texture, has
more profound impacts on albedo relative errors (in mag-
nitude) than correlation coefficients (in temporal sequence).
The large correlation frequency distribution changes for
diffuse albedos between E10 and E6 also result from the
magnitude effect caused by the use of spatially varying (in
terms of surface moisture) versus constant background soil
albedo. In summary, both temporal and spatial variability of

a) Dir, Vis b) Dir, Nir
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E3 . 1 | —— T
E4 [ . I
E5 - [ 1 = 1
E6 _ 1 1
E7 - = 8 | ———
E8 - [ 1 ——
E9 I 1 =1
E10 - 1 7 B
CLM e y f——
30 0 20 40 60 8 100 30 0 20 40 60 8 100
¢) Dif, Vis d) Dif, Nir
NEW ~ = 7 E ]
E1 1 | T = 1
E2 ~ | ——— 7 | ——
E3 ~ ] 7 = ]
E4 - = 1 7 E ]
E5 1 ——— 7 = 1
E6 - - 7 e 1
E7 1 = 7 —1
E8 - ———— 7 | —— I
E9 1 = 1 7 E ]
E10 ~ | —— 7 E 1
CLM - —— i = I—
30 0 20 40 60 80 100 30 0 20 40 60 80 10

Figure 10. Same as Figure 9 but for the new parameter-
ization after the localization.
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line). See Figure 2 for other legends.

soil moisture must be accounted for to adequately represent
albedo variations.

6. Discussion

[2] The new land surface albedo parameterization so
developed represents a marked advance in the integration
of a physically based conceptual model with satellite

measurements. As compared with the MODIS data, it
results in high gross correlation coefficients of 0.57—-0.71
and low relative errors within 11-21%. This is a significant
improvement over the existing CLM albedo scheme, which
has gross values of 0.03—0.32 and 37-71%, respectively.
The result, however, contains several important caveats,
each of which must be rigorously assessed for its impact
before the true predictive skill of the model is established.
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[63] First, substantial biases in LDAS soil moisture,
MODIS albedo, and other input data are expected to directly
influence the result, including the validity of the derived
parameters and the credibility of the model. Soil moisture
has large differences in its dynamic range inherited between
different LSMs, and thus its absolute value is less credible
than its temporal variation. Soil albedo may also have
important impacts on soil moisture simulation. Thus the
albedo dependence on soil moisture may have to be
redefined for coupling with different LSMs. An appealing
approach is to couple the new albedo parameterization with
the target LSM, run the entire host model (such as LDAS or
CWREF), and repeat the optimization procedure to account
for albedo-soil moisture feedbacks. This iterative inverse
modeling approach will provide an optimal solution of
albedo dependence on soil moisture that is most suitable
for the LSM and host model chosen. This will be a focus of
our future research. In addition, we have used MODIS data
with quality flags of both QA =0 and 1 to achieve sufficient
sample size. The latter, having poorer quality, may contain
certain snow, cloud, or other contaminations that may
partially explain the poor model skill in winter and moun-
tainous regions. The model is built upon the bold assump-
tion that all these data are accurate. We plan to revisit the
issue using improved data when available, such as the
upcoming MODIS version 005 that includes both Aqua
and Terra measurements for fuller retrievals and thus
provides sufficient samples with QA = 0 for model devel-
opment, as well as the satellite retrievals of soil moisture
from the European Space Agency’s SMOS mission in 2006
and NASA’s Hydros mission in 2010 [Wigneron et al.,
2000; Entekhabi et al., 2004; Crow et al., 2005; X. Zhan
et al., Retrieving surface soil moisture from coarse resolu-
tion radiometer and fine resolution radar observations using
the Kalman filter, submitted to /EEE Transactions on
Geoscience and Remote Sensing, 2005].

[64] Second, the optimization solution is not unique,
especially for individual model parameters. The only insur-
ance is that it produces a set of parameters to minimize the
integrated model-data variance. It is valuable to conduct
sensitivity studies by using multiple data sources (especially
for soil moisture having great variability and uncertainty) as
well as different data periods and optimization procedures.
The statistical stability and physical robustness of the
solution can be evaluated by cross examination of the
prediction for one period using the model developed from
another and vice versa. Similarly, the dynamic component
built from one region can be evaluated for application in
different regions. These tests are in progress.

[65] Third, the conceptual model physics is far from
complete. For example, the effects of LAI and SAI are
currently treated equally. Dead leaves have negligible pho-
tosynthesis, and thus very different single scattering albedos
from those of green leaves [Asner, 1998]. As highlighted by
Zhou et al. [2003], this equal treatment exaggerates the SAI
contribution to surface albedo, especially in winter. In
addition, the model is developed for the specific CWRF
domain at a 30-km grid spacing where a dominant LCC
type is assumed. Thus the parameters derived for each LCC
type may contain contributions from other vegetation types.
This problem can be resolved when consistent, fine-resolu-
tion, and high-quality input data are available in the future.
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[66] Given these and other caveats, our conceptual model
solution as integrated provides the best fit to the data, with
the highest correlation and lowest deviation between the
two. The real advantage of this model lies in its cost-
effectiveness for applications in global and regional climate
models. We however concur with Schluessel et al. [1994]
that the model is not adequate at this stage for ecological
applications seeking faithful representation of plant and soil
characteristic parameters. More field or laboratory measure-
ments are needed to more physically bound or specify some
of the model parameters to reduce the degrees of freedom so
that the optimization solver can give a more robust and
meaningful estimate of the remaining parameters. Nonethe-
less, the conceptual model so developed and the objective
procedure to solve the parameters can be more generally
applied.

[67] Acknowledgments. We appreciate two anonymous reviewers for
their constructive comments. We thank AEM Design, Inc., for making the
FFSQP solver freely available. This research was partially supported by the
United States Department of Agriculture (USDA) UV-B Monitoring and
Research Program grant to University of Illinois at Urbana-Champaign (AG
CSU G-1502-5) and the China National 973 Key Project Award
G19990435. Yongjiu Dai was supported through the NSFC of China under
grant 40225013. The data processing was mainly conducted on the UIUC/
NCSA supercomputing facility. The views expressed are those of the
authors and do not necessarily reflect those of the sponsoring agencies or
the Illinois State Water Survey.

References

Asner, G. P. (1998), Biophysical and biochemical sources of variability in
canopy reflectance, Remote Sens. Environ., 64, 234—-253.

Avissar, R., and R. Pielke (1989), A parameterization of heterogeneous land
surfaces for atmospheric numerical models and its impact on regional
meteorology, Mon. Weather Rev., 117, 2113-2136.

Bénninger, D., and H. Fliihler (2004), Modeling light scattering at soil
surfaces, IEEE Trans. Geosci. Remote Sens., 42, 1462—1471.

Berbet, M. L. C., and M. H. Costa (2003), Climate change after tropical
deforestation: Seasonal variability of surface albedo and its effects on
precipitation change, J. Clim., 116, 2099—-2104.

Betts, A. K., F. Chen, K. E. Mitchell, and Z. Janji¢ (1997), Assessment of
the land surface and boundary layer models in two operational versions of
the NCEP Eta model using FIFE data, Mon. Weather Rev., 125, 2896—
2916.

Betts, R. A. (2000), Offset of the potential carbon sink from boreal foresta-
tion by decreases in surface albedo, Nature, 408, 187—190.

Bonan, G. B. (1996), A land surface model (LSM version 1.0) for eco-
logical, hydrological, and atmospheric studies: Technical description
and user’s guide, NCAR Tech. Note NCAR/TN-4171STR, 150 pp., Natl.
Cent. for Atmos. Res., Boulder, Colo.

Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai,
R. E. Dickinson, and Z.-L. Yang (2002), The land surface climatology
of the Community Land Model coupled to the NCAR Community
Climate Model, J. Clim., 15, 3123-3149.

Brest, C. L. (1987), Seasonal albedo of an urban/rural landscape from
satellite observations, J. Appl. Meteorol., 26, 1169—1187.

Briegleb, B. P., P. Minnis, V. Ramanathan, and E. Harrison (1986), Com-
parison of regional clear-sky albedos inferred from satellite observations
and models comparisons, J. Clim. Appl. Meteorol., 25, 214-226.

Buermann, W., Y. Wang, J. Dong, L. Zhou, X. Zeng, R. E. Dickinson, C. S.
Potter, and R. B. Myneni (2002), Analysis of a multiyear global vegeta-
tion leaf area index data set, J. Geophys. Res., 107(D22), 4646,
doi:10.1029/2001JD000975.

Cess, R. D. (1978), Biosphere-albedo feedback and climate modeling,
J. Atmos. Sci., 35, 1765-1768.

Charney, J. G. (1975), Dynamics of deserts and drought in the Sahel, Q. J.
R. Meteorol. Soc., 101, 193—-202.

Charney, J. G., W. J. Quirk, S.-H. Chow, and J. Kornfield (1977), A com-
parative study of the effects of albedo change on drought in semi-arid
regions, J. Atmos. Sci., 34, 1366—1385.

Chen, F., K. E. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q. Y.
Duan, M. Ek, and A. Betts (1996), Modeling of land surface evaporation
by four schemes and comparison with FIFE observations, J. Geophys.
Res., 101, 7251—-7268.

20 of 22



D11107

Cosgrove, B. A., et al. (2003), Real-time and retrospective forcing in
the North American Land Data Assimilation System (NLDAS) project,
J. Geophys. Res., 108(D22), 8842, doi:10.1029/2002JD003118.

Crow, W. T., T. Chan, D. Entekhabi, P. R. Houser, A. Hsu, T. J. Jackson,
E. Njoku, P. E. O’Neill, J. C. Shi, and X. Zhan (2005), An observing
system simulation experiment for Hydros radiometer-only soil moisture
products, [EEE Trans. Geosci. Remote Sens., in press.

Culf, A. D., G. Fisch, and M. G. Hodnett (1995), The albedo of Amazonian
forest and ranch land, J. Clim., 8, 1544—1554.

Dai, Y., et al. (2003), The Common Land Model, Bull. Am. Meteorol. Soc.,
84, 1013-1023.

Dai, Y., R. E. Dickinson, and Y.-P. Wang (2004), A two-big-leaf model for
canopy temperature, photosynthesis and stomatal conductance, J. Clim.,
17,2281-2299.

Dickinson, R. E. (1983), Land surface processes and climate-surface albe-
dos and energy balance, Adv. Geophys., 25, 305—-353.

Dickinson, R. E., and B. Hanson (1984), Vegetation-albedo feedbacks,
in Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser.,
vol. 29, edited by J. E. Hanson and T. Takahashi, pp. 180—186,
AGU, Washington, D. C.

Dickinson, R. E., B. Pinty, and M. M. Verstraete (1990), Relating surface
albedos in GCMs to remotely sensed data, Agric. For. Meteorol., 52,
109-131.

Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy (1993), Bio-
sphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the
NCAR Community Model, NCAR Tech. Note NCAR/TN-387+STR, 72
pp., Natl. Cent. for Atmos. Res., Boulder, Colo.

Dirmeyer, P. A., and J. Shukla (1994), Albedo as a modulator of climate
response to tropical deforestation, J. Geophys. Res., 99, 20,863—20,877.

Dorman, J. L., and P. J. Sellers (1989), A global climatology of albedo,
roughness length and stomatal resistance for atmospheric general circula-
tion models as represented by the simple biosphere model (SiB), J. Appl.
Meteorol., 28, 833—855.

Duke, C., and M. Guérif (1998), Crop reflectance estimate errors from the
SAIL model due to spatial and temporal variability of canopy and soil
characteristics, Remote Sens. Environ., 66, 286—297.

Duynkerke, P. G. (1992), The roughness length for heat and other vegeta-
tion parameters for a surface of short grass, J. Appl. Meteorol., 31, 579 —
586.

Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren,
G. Gayno, and J. D. Tarpley (2003), Implementation of the upgraded
Noah land-surface model in the NCEP operational mesoscale Eta model,
J. Geophys. Res., 108(D22), 8851, doi:10.1029/2002JD003296.

Entekhabi, D., et al. (2004), The hydrosphere state (Hydros) satellite
mission: An Earth system pathfinder for global mapping of soil
moisture and land freeze/thaw, [EEE Trans. Geosci. Remote Sens.,
42, 2184-2195.

Gallo, K., L. Ji, B. Reed, J. Dwyer, and J. Eidenshink (2004), Comparison
of MODIS and AVHRR 16-day normalized difference vegetation index
composite data, Geophys. Res. Lett., 31, L07502, doi:10.1029/
2003GL019385.

Goudriaan, J. (1977), Crop Micrometeorology: A Simulation Study, 249 pp.,
Wageningen Cent. for Agric. Publ. and Doc., Wageningen, Netherlands.

Govindasamy, B., P. B. Dufty, and K. Caldeira (2001), Land use changes
and Northern Hemisphere cooling, Geophys. Res. Lett., 28, 291-294.

Grant, I. F., A. J. Prata, and R. P. Cechet (2000), The impact of the diurnal
variation of albedo on the remote sensing of the daily mean albedo of
grassland, J. Appl. Meteorol., 39, 231—-244.

Hales, K., J. D. Neelin, and N. Zeng (2004), Sensitivity of tropical land
climate to leaf area index: Role of surface conductance versus albedo,
J. Clim., 17, 1459—-1473.

Henderson-Sellers, A., and M. F. Wilson (1983), Surface albedo data for
climatic modeling, Rev. Geophys., 21, 1743—1778.

Idso, S. B., R. D. Jackson, R. J. Reginato, B. A. Kimball, and F. S.
Nakayama (1975), The dependence of bare soil albedo on soil water
content, J. Appl. Meteorol., 14, 109—113.

Intergovernmental Panel on Climate Change (2001), Climate Change 2001 :
The Scientific Basis, edited by J. T. Houghton et al., 881 pp., Cambridge
Univ. Press, New York.

Irons, J. R., K. J. Ranson, and C. S. T. Daughtry (1988), Estimating big
bluestem albedo from directional reflectance measurements, Remote
Sens. Environ., 25, 185-199.

Ishiyama, T., K. Tsuchiya, and S. Sugihara (1996), Ground surface features
of the Taklimakan Desert, Adv. Space Res., 17, 8(41)—8(48).

Kimes, D. S., P. J. Sellers, and W. W. Newcomb (1987), Hemispherical
reflectance variations of vegetation canopies and implications for global
and regional energy budget studies, J. Clim. Appl. Meteorol., 26, 959—
972.

Knyazikhin, Y., et al. (1999), MODIS leaf area index (LAI) and fraction of
photosynthetically active radiation absorbed by vegetation (FPAR) pro-

LIANG ET AL.: LAND SURFACE ALBEDO PARAMETERIZATION

D11107

duct (MOD15) algorithm, theoretical basis document, NASA Goddard
Space Flight Cent., Greenbelt, Md.

Koren, V., J. Schaake, K. Mitchell, Q. Y. Duan, F. Chen, and J. M. Baker
(1999), A parameterization of snowpack and frozen ground intended for
NCEP weather and climate models, J. Geophys. Res., 104, 19,569—
19,585.

Koster, R. D., and M. J. Suarez (1992), Modeling the land surface boundary
in climate models as a composite of independent vegetation stands,
J. Geophys. Res., 97, 2697-2715.

Kriebel, K. T. (1979), Albedo of vegetated surfaces: Its variability with
differing irradiances, Remote Sens. Environ., 8, 283—290.

Li, Z., M. C. Cribb, and A. P. Trishchenko (2002), Impact of surface
inhomogeneity on solar radiative transfer under overcast conditions,
J. Geophys. Res., 107(D16), 4294, doi:10.1029/2001JD000976.

Liang, S. (2001), Narrowband to broadband conversion of land surface
albedo: 1. Algorithms, Remote Sens. Environ., 76, 213—238.

Liang, S., A. H. Strahler, and C. Walthall (1999), Retrieval of land surface
albedo from satellite observations: A simulation study, J. Appl. Meteorol.,
38, 712-725.

Liang, X.-Z., W. Gao, K. E. Kunkel, J. Slusser, X. Pan, H. Liu, and Y. Ma
(2003), Sustainability of vegetation over northwest China: Part 1. Climate
response to grassland, in Ecosystems Dynamics, Ecosystem—Society In-
teractions, and Remote Sensing Applications for Semi-Arid and Arid
Land, edited by X. Pan et al., pp. 2944, Soc. of Photo-Opt. Instrum.
Eng. (SPIE), Bellingham, Wash.

Liang, X.-Z., H. Choi, K. E. Kunkel, Y. Dai, E. Joseph, J. X. L. Wang, and
P. Kumar (2004), Development of the regional climate-weather research
and forecasting model (CWRF), Part A: Surface boundary conditions,
ISWS SR 2005-01, 32 pp., 11l. State Water Surv. Sci. Res., Champaign, 1.
(Available at http://www.sws.uiuc.edu/pubs/pubdetail.asp?CallNumber=
ISWS+SR+2005%2D01).

Lobell, D. B., and G. P. Asner (2002), Moisture effects on soil reflectance,
Soil Sci. Soc. Am. J., 66, 722—-727.

Lofgren, B. M. (1995), Surface albedo-climate feedback simulated using
two-way coupling, J. Clim., 8, 2543—-2562.

Lucht, W., C. B. Schaaf, and A. H. Strahler (2000), An algorithm for the
retrieval of albedo from space using semiempirical BRDF models, /EEE
Trans. Geosci. Remote Sens., 38, 977—998.

Masson, V., J.-L. Champeaux, F. Chauvin, C. Meriguet, and R. Lacaze
(2003), A global database of land surface parameters at 1-km resolution
in meteorological and climate models, J. Clim., 16, 1261—1282.

Matthias, A. D., A. Fimbres, E. E. Sano, D. F. Post, L. Accioly, A. K.
Batchily, and L. G. Ferreira (2000), Surface roughness effects on soil
albedo, Soil Sci. Soc. Am. J., 64, 1035—-1041.

Mintz, Y. (1984), The sensitivity of numerically simulated climates to
land-surface conditions, Chapter 6, In: The Global Climate, edited by
J. Houghton, chap. 6, pp. 79—105, Cambridge Univ. Press, New
York.

Mitchell, K. E., et al. (2004), The multi-institution North American Land
Data Assimilation System (NLDAS): Utilizing multiple GCIP products
and partners in a continental distributed hydrological modeling system,
J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

Mooney, H. A., J. Ehleringer, and I. Bjorkman (1977), The energy balance
of leaves of the evergreen desert shrub Atriplex hymenelytra, Oecologia,
29, 301-310.

Muller, E., and H. Décamps (2001), Modeling soil moisture-reflectance,
Remote Sens. Environ., 76, 173—180.

Myhre, G., and A. Myhre (2003), Uncertainties in radiative forcing due to
surface albedo changes caused by land-use changes, J. Clim., 16, 1511—
1524.

Myneni, R. B., et al. (2002), Global products of vegetation leaf area and
fraction absorbed PAR from year one of MODIS data, Remote Sens.
Environ., 83, 214-231.

Nkemdirim, L. C. (1972), A note on the albedo of surfaces, J. Appl. Me-
teorol., 11, 867—874.

Oleson, K. W., G. B. Bonan, C. B. Schaaf, F. Gao, Y. Jin, and A. Strahler
(2003), Assessment of global climate model land surface albedo using
MODIS data, Geophys. Res. Lett., 30(8), 1443, doi:10.1029/
2002GL016749.

Pinker, R. T., O. E. Thompson, and T. F. Eck (1980), The albedo of a
tropical evergreen forest, Q. J. R. Meteorol. Soc., 106, 551—558.

Pinker, R. T., et al. (2003), Surface radiation budgets in support of
the GEWEX Continental-Scale International Project (GCIP) and the
GEWEX Americas Prediction Project (GAPP), including the North
American Land Data Assimilation System (NLDAS) project, J. Geophys.
Res., 108(D22), 8844, doi:10.1029/2002JD003301.

Pinty, B., F. Roveda, M. M. Verstraete, N. Gobron, Y. Govaerts, J. V.
Martonchik, D. J. Diner, and R. A. Kahn (2000), Surface albedo
retrieval from Meteosat: 2. Applications, J. Geophys. Res., 105,
18,099-18,112.

21 of 22



D11107

Robock, A., et al. (2003), Evaluation of the North American Land Data
Assimilation System over the southern Great Plains during the warm
season, J. Geophys. Res., 108(D22), 8846, doi:10.1029/2002JD003245.

Rodell, M., J. S. Famiglietti, J. Chen, S. Seneviratne, P. Viterbo, S. Holl,
and C. R. Wilson (2004a), Basin scale estimates of evapotranspiration
using GRACE and other observations, Geophys. Res. Lett., 31, 1L.20504,
doi:10.1029/2004GL020873.

Rodell, M., et al. (2004b), The global land data assimilation system, Bull.
Am. Meteorol. Soc., 85, 381-394.

Rowntree, P. R., and A. B. Sangster (1986), Modelling the impact of land
surface changes on Sahel rainfall, Rep. 9, World Clim. Res. Programme,
Geneva.

Schaaf, C. B., et al. (2002), First operational BRDF, albedo and nadir
reflectance products from MODIS, Remote Sens. Environ., 83, 135—148.

Schaake, J. C., et al. (2004), An intercomparison of soil moisture fields in
the North American Land Data Assimilation System (NLDAS), J. Geo-
phys. Res., 109, D01S90, doi:10.1029/2002JD003309.

Schluessel, G., R. E. Dickinson, J. L. Privette, W. J. Emery, and R. Kokaly
(1994), Modeling the bidirectional reflectance distribution function of
mixed finite plant canopies and soil, J. Geophys. Res., 99, 10,577—
10,600.

Sellers, P. J. (1985), Canopy reflectance, photosynthesis and transpiration,
Int. J. Remote Sens., 6, 1335—1372.

Sellers, P. J., and J. L. Dorman (1987), Testing the simple biosphere model
(SiB) using point micrometeorological and biophysical data, J. Appl.
Meteorol., 26, 622—651.

Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher (1986), A simple bio-
sphere model (SiB) for use within general circulation models, J. Atmos.
Sci., 43, 305-331.

Strugnell, N. C., and W. Lucht (2001), An algorithm to infer continental
scale albedo inferred from AVHRR data, land cover class and field ob-
servations of typical BRDFs, J. Clim., 14, 1360—1376.

Tapley, B., S. Bettadpur, J. Ries, P. F. Thompson, and M. Watkins (2004),
GRACE measurements of mass variability in the Earth system, Science,
305, 503-505.

Tian, Y., R. E. Dickinson, L. Zhou, R. B. Myneni, M. Friedl, C. B. Schaaf,
M. Carroll, and F. Gao (2004), Land boundary conditions from MODIS
data and consequences for the albedo of a climate model, Geophys. Res.
Lett., 31, L05504, doi:10.1029/2003GL019104.

Tsvetsinskaya, E. A., C. B. Schaaf, F. Gao, A. H. Strahler, R. E. Dickinson,
X. Zeng, and W. Lucht (2002), Relating MODIS-derived surface albedo
to soils and rock types over northern Africa and the Arabian peninsula,
Geophys. Res. Lett., 29(9), 1353, doi:10.1029/2001GL014096.

Verstraete, M. M., B. Pinty, and R. E. Dickinson (1990), A physical model
of the bidirectional reflectance of vegetation canopies: 1. Theory, J. Geo-
phys. Res., 95, 11,755—11,765.

Wang, Y. P. (2003), A comparison of three different canopy radiation
models commonly used in plant modeling, Funct. Plant Biol., 30,
143-152.

Wang, Z., X. Zeng, M. Barlage, R. E. Dickinson, F. Gao, and C. B. Schaaf
(2004), Using MODIS BRDF/albedo data to evaluate global model land
surface albedo, J. Hydrometeorol., 5, 3—14.

Wei, X., A. N. Hahmann, R. E. Dickinson, Z.-L. Yang, X. Zeng, K. J.
Schaudt, C. B. Schaaf, and N. Strugnell (2001), Comparison of albedos
computed by land surface models and evaluation against remotely sensed
data, J. Geophys. Res., 106, 20,687—20,702.

LIANG ET AL.: LAND SURFACE ALBEDO PARAMETERIZATION

D11107

Wigneron, J.-P., P. Waldteufel, A. Chanzy, J.-C. Calvet, and Y. Kerr (2000),
Two-D microwave interferometer retrieval capabilities of over land sur-
faces (SMOS Mission), Remote Sens. Environ., 73, 270—282.

Wilson, M. F., and A. Henderson-Sellers (1985), A global archive of
land cover and soils data for use in general circulation climate models,
J. Climatol., 5, 119-143.

Xue, Y., and J. Shukla (1993), The influence of land surface properties on
Sahel climate: 1. Desertification, J. Clim., 6, 2232-2245.

Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla (1991), A simplified
biosphere model for global climate studies, J. Clim., 4, 345—364.

Zeng, X., R. E. Dickinson, A. Walker, M. Shaikh, R. S. DeFries, and J. Qi
(2000), Derivation and evaluation of global 1-km fractional vegetation
cover data for land modeling, J. Appl. Meteorol., 39, 826—839.

Zeng, X., M. Shaikh, Y. Dai, R. E. Dickinson, and R. Myneni (2002),
Coupling of the Common Land Model to the NCAR Community Climate
Model, J. Clim., 15, 1832—1854.

Zeng, X., P. Rao, R. S. Defries, and M. C. Hansen (2003), Interannual
variability and decadal trend of global fractional vegetation cover from
1982 to 2000, J. Appl. Meteorol., 42, 1525—1530.

Zhou, J. L., A. L. Tits, and C. T. Lawrence (1997), User’s guide for FFSQP
version 3.7: A FORTRAN code for solving constrained nonlinear (mini-
max) optimization problems, generating iterates satisfying all inequality
and linear constraints, 7ech. Rep. SRC-TR-92-107r5, 44 pp., Inst. for Syst.
Res., Univ. of Md. at College Park. (Available at http://www.aemdesign.
com/downloadfsqp.htm).

Zhou, L., C. J. Tucker, R. K. Kaufmann, D. Slayback, N. V. Shabanov, and
R. B. Myneni (2001), Variations in northern vegetation activity inferred
from satellite data of vegetation index during 1981 to 1999, J. Geophys.
Res., 106, 20,069—-20,083.

Zhou, L., et al. (2003), Comparison of seasonal and spatial variations of
albedos from MODIS and Common Land Model, J. Geophys. Res.,
108(D15), 4488, doi:10.1029/2002JD003326.

Y. Dai, Research Center for Remote Sensing and GIS, School of
Geography, Beijing Normal University, Beijing 100875, China.
(yongjiudai@bnu.edu.cn)

F. Gao, Biospheric Sciences Branch, NASA Goddard Space Flight
Center, Greenbelt, MD 20771, USA. (fgao@Itpmail.gsfc.nasa.gov)

W. Gao and J. Slusser, USDA UV-B Monitoring and Research Program,
Natural Resource Ecology Laboratory, Colorado State University, Depart-
ment 1499, Fort Collins, CO 80523-1499, USA. (wei.gao@colostate.edu;
james.slusser@colostate.edu)

P. R. Houser and M. Rodell, Hydrological Sciences Branch, NASA
Goddard Space Flight Center, Greenbelt, MD 20771, USA. (paul.houser@
nasa.gov; matthew.rodell@nasa.gov)

K. Kunkel, X.-Z. Liang, and M. Xu, Illinois State Water Survey,
Department of Natural Resources, University of Illinois at Urbana-
Champaign, 2204 Griffith Drive, Champaign, IL 61820-7495, USA.
(kkunkel@uiuc.edu; xliang@uiuc.edu; minxu@uiuc.edu)

Q. Min, Atmospheric Sciences Research Center, State University of New
York at Albany, 251 Fuller Road, Albany, NY 12205, USA. (min@asrc.
cestm.albany.edu)

C. B. Schaaf, Department of Geography, Center for Remote Sensing,
Boston University, 675 Commonwealth Avenue, Boston, MA 02215-1401,
USA. (schaaf@crsa.bu.edu)

22 of 22



